
Multiplayer Online Games

PhD Student Umut Riza ERTURK
Produced for Realtime Software Development Lecture

Lecturer: Kayhan Imre
Hacettepe University

Jan 2011

1

What is a Multiplayer Game?

• More than one player at a time or NOT playing the
same game session

• Spacewar is the first multiplayer game and running
on a computer (1961) (made more than $100 000)

• Tennis for Two is the very first multiplayer game
running on an oscilloscope(1958)

2

Spacewar
Taken from http://en.wikipedia.org/wiki/Spacewar!

Tennis for Two
Taken from
http://en.wikipedia.org/wiki/Tennis_for_T
wo

http://en.wikipedia.org/wiki/Spacewar!
http://en.wikipedia.org/wiki/Tennis_for_Two
http://en.wikipedia.org/wiki/Tennis_for_Two

What is an Online Game?

• In which players connect to devices remotely to play

• MUD 1 is one of the first online games, text based

• Basic client-server topology

3
MUD-1
Armitage p.9

Early Multiplayer Online Games
(Milestones)

• More than one player playing on the same game
session

• First example: Doom by ID software (1993)
– Using IPX for communication
– P2P (peer to peer topology)
– Every 1/35th of a second game collects user input and

broadcasts the network packets (sends it to other players)
– No sever, no client (or vice versa)
– Pros and cons? (discussion topic)

• Doom 2
– Same topology and method except for broadcasting

packets

4

Early Multiplayer Online Games
(Milestones)

• Quake (1996)
– Big leap in online gaming

– Server-client topology

– No Tunnelling (quake was using directly internet
protocols thus no need to convert wan packets into
different packets) which enabled players to play via
internet

– No need to meet in the same time and game room,
Quake had its own game rooms on internet

– Clients send only their own inputs to the server and
get back the new game state from the server

5

Communication Architectures for
Multiplayer Network Games

• (a)Pure client: nothing but a client

• (b)P2P: No servers, clients should
know each other
– n*n connections might be needed

– messaging traffic increases exponential as
new players join the game

– Vulnerable to cheating

• (c)Client-Server: One server which
knows clients but clients are not
aware of each other hence all the
messaging is passing through the
server
– Needs a ‘strong’ server responding

consistently and fair to all clients

– Makes voice chatting or data exchange btw
clients hard

6

Communication Architectures for
Multiplayer Network Games

• (d)Hybrid Sever: Allows easy data
exchange between clients
– Security problems may occur as clients

might be vulnerable to attacks

– clients network might be kept busy by other
clients in purpose

– Still needs a strong and consistent server

• (d)Network of Servers : Allows hundred or even
thousands of people to be online like in
MMORPG games

– Costly

– Difficult to manage and maintain

7

Network Problems

• Latency, Jitter, Loss
– Latency

• Latency is the time spent for a packet to reach its
destination.

• Considered as half of Round Trip Time (send a data and get it
back) for symmetric networks

– Jitter
• Variations in latency
• Means inconsistency

– Loss
• Some packets gets lost (corrupted)
• Increases time spent for data exchange

8

Network Problems

• Causes of
– Latency

• Propagation delay which is a result of;
– Physical Limitations (speed of light is the upper limit for

communication)
– latency (ms) = (distance of link in kilometres)/300

• Serialisation; data is transferred in series of bits, all the bits
should arrive to the destination in a correct order to be
serialised which takes time

– latency (ms) = 8*(link layer frame length in bytes)/(link speed in
Kbps)

• Queuing delays; Switches doesn’t provide equally timeslots
for internet communication which means if the internet
traffic is heavy on a switch internet gets slow.

9

Network Problems

• Causes of

– Jitter

• Path length changes
– Data being sent doesn’t always use the same path on reaching

its destination

• Packet size changes
– Hence because of serialisation, sending time varies

10

Network Problems

• Causes of

– Loss
– Physical unrecoverable bit errors

– Dropping packets because of heavy communication traffic

11

How Network Games Tolerate
Network Problems

• Latency Compensation
– Why

• There will always be delays because of physical limitations
• Bandwidth is increasing but there are loads of packet loss
• Broadband communication speed varies from country to

country
• A Game should be

– Consistent
– Responsive
– Fair

– So we always need methods to compensate the
latency caused by network infrastructure

12

Latency Compensation

• The Simplest Client Side Algorithm of Network
Games
– Collect user input

– Pack up data and send it to server

– Receive updates from server and unpack

– Determine game state

– Render scene

– Repeat

13

Latency Compensation

• Outcome of the basic algorithm

– Client waits until server responses which
decreases the responsiveness of the game but
also makes the game consistent

14

Latency Compensation

• Prediction
– Player Prediction

• Client predicts player’s own movement and continues
movement

• Algorithm
– Sample user input

– Pack up data and send to server

– Determine visible objects and game state

– Render scene

– Receive updates from server and upack

– Fix up any discrepancies

– Repeat.

15

Latency Compensation

• Prediction
– Opponent Prediction

• Client predicts opponents’
movements

• Requires more data to be
transferred from other clients
in order to make a reasonable
prediction

• However, by not sending the
data if the difference is under
and threshold, data transfer
rate could be reduced

16

• Algorithm on the player to be predicted
• Sample user input
• Update {location | velocity | acceleration}

on the basis of new input
• Compute predicted location on the basis of

previous {location | velocity | acceleration}
• If (current location – predicted location) <

threshold then
• Pack up {location | velocity |

acceleration} data
• Send to each other opponent

• Repeat.

• Algorithm on the opponent
• Receive new packet
• Extract state update information {location |

velocity | acceleration}
• If seen unit before then

• Update unit information
• Else

• Add unit information to list
• For each unit in list

• Update predicted location
• Render frame
• Repeat

Latency Compensation

• Prediction Summary

– Might be useful if a responsive but not that
consistent game

– What if a packet gets lost? And arrives afterwards
(in this case using UDP is not the best idea)

– Some situations are impossible to predict, i.e. 3
players running towards each other and tosses,
who tossed to whom first?

17

Latency Compensation

• Time Manipulation

– Some clients might have high latencies

– Game should be fair, consistent and responsive

– (example of collecting rewards)

18

Latency Compensation

• Time Manipulation

– Time Delay

• Server looks at the latencies and in order to maintain
the fairness and consistency adds some extra delay for
the ones has less latency
– Jitter is a problem here

– What if the client is showing its latency higher than it actually
is

19

Latency Compensation

• Time Manipulation
– Time Wrap

• Server looks at latency to the client
and rolls back the time as necessary

• Also protects from inconsistencies
caused by loss packets (as they
might not arrive in time order)

• May still cause inconsistencies i.e.
the player-1 is just moved to behind
of a wall and at that moment
player-2 shot, for player-1 bullet
bend and moved to the behind of
the wall (this may cause regularly if
jitter rate is high)

20

• Algorithm on server side
• Receive packet from client
• Extract information (user input)
• Elapsed time = current time –

latency to client (rollback the time
to the clients time)

• Rollback all events in reverse
order to current time – elapsed
time

• Execute user command
• Repeat all events in order,

updating any clients affected
• Repeat.

Latency Compensation

• Sending less or compressed data
– Lossless compression: LZW algorithms for

compression of stream data
– Opponent prediction: Reduces the data sent
– Delta compression: Send the differences not the

whole data
– Interest Management: Send information of close

objects (don’t send distant objects’ information)
– P2P: Avoids sending data irrelevant data to the server
– Update Aggregation: Collect data for a client and sent

all the collected data at a time instead of sending
instant update data

21

Further reading topics

• Cheating Prevention

• Fair Randomness

22

Questions

23

Bibliography

– Armitage, G. , Claypool, M. , Branch, P.
(2006). Networking and Online G ames. West
Sussex: John Wiley & Sons Ltd.

– Smed, J. , Hakonen, H. (2006). Algorithms and
Networking for Computer Games . West Sussex:
John Wiley & Sons Ltd.

– Barron, T. (2001). Multiplayer Game
Programming. California: Stacy L. Hiquet

24

