Multiplayer Online Games

PhD Student Umut Riza ERTURK
Produced for Realtime Software Development Lecture
Lecturer: Kayhan Imre

Hacettepe University
Jan 2011

What is a Multiplayer Game?

 More than one player at a time or NOT playing the
same game session

* Spacewar is the first multiplayer game and running
on a computer (1961) (made more than $100 000)

e Tennis for Two is the very first multiplayer game

running on an oscilloscope(1958)

Tennis for Two

Taken from
http://en.wikipedia.org/wiki/Tennis_for T

Spacewar
Taken from http://en.wikipedia.org/wiki/Spacewar!

wo

http://en.wikipedia.org/wiki/Spacewar!
http://en.wikipedia.org/wiki/Tennis_for_Two
http://en.wikipedia.org/wiki/Tennis_for_Two

What is an Online Game?

* In which players connect to devices remotely to play
e MUD 1 is one of the first online games, text based
e Basic client-server topology

This persona already exists - what's the password?

*

Yes!

Hello, Bunkus!

Elizabethan tearoom.

This cosy, Tudor room is where all British Legends adventures start. Its
exposed oak beams and soft, velvet-covered furnishings provide it with the

ideal atmosphere in which to relax before venturing out into that strange, i
timeless realm. A sense of decency and decorum prevails, and a feeling of

kinship with those who, like you, seek their destiny in The Land. There are

exits in all directions, each of which leads into a wisping, magical mist of Network 0
obvious teleportative properties...

i Terminal Server
Iceberg the necromancer has just arrived.) '

- 3
Iceberg the necromancer has just left.

*

Balthazar the mortal wizard has just arrived.

Terminal
*

From somewhere in the distance comes a low reverberating sound.
*

MUD-1

Armitage p.9

Early Multiplayer Online Games
(Milestones)

 More than one player playing on the same game
session
* First example: Doom by ID software (1993)
— Using IPX for communication
— P2P (peer to peer topology)

— Every 1/35 of a second game collects user input and
broadcasts the network packets (sends it to other players)

— No sever, no client (or vice versa)
— Pros and cons? (discussion topic)

e Doom 2

— Same topology and method except for broadcasting
packets

Early Multiplayer Online Games
(Milestones)

* Quake (1996)
— Big leap in online gaming
— Server-client topology

— No Tunnelling (quake was using directly internet
protocols thus no need to convert wan packets into
different packets) which enabled players to play via
internet

— No need to meet in the same time and game room,
Quake had its own game rooms on internet

— Clients send only their own inputs to the server and
get back the new game state from the server

Communication Architectures for
Multiplayer Network Games

Q

PN

g g =+ ! -2
%

Clisnt
(a) .
9

[1

Client Cliant

g (b) (g)
oz

2 B
2-8-9 =

a

&
Client

!]

Client

#
i

"\ * .ﬂ Cllent ') Ser'.ﬂa
gl _Ql
Cliant Client Client
(d) (a)

(a)Pure client: nothing but a client

(b)P2P: No servers, clients should
know each other
— n*n connections might be needed

— messaging traffic increases exponential as
new players join the game

— Vulnerable to cheating
(c)Client-Server: One server which
knows clients but clients are not
aware of each other hence all the
messaging is passing through the
server

— Needs a ‘strong’ server responding
consistently and fair to all clients

— Makes voice chatting or data exchange btw
clients hard

Communication Architectures for
Multiplayer Network Games

=N

Cllant

Clignit
Clisnt

(8]

Client

Q ’

Cliant

O B

-0-2

Client Server Client

4

Client
(d)

"

Clignt

Cllanl ‘

‘-

Gllent ' Sarver

Cllent

Dllant

"=

Sar'.'er Cliant

=]

Client
(g)

&
Client
#’ -

Server

Client
"t
a

Server

0

O

Client

(d)Hybrid Sever: Allows easy data
exchange between clients

— Security problems may occur as clients
might be vulnerable to attacks

— clients network might be kept busy by other
clients in purpose

— Still needs a strong and consistent server

(d)Network of Servers : Allows hundred or even
thousands of people to be online like in
MMORPG games

— Costly
— Difficult to manage and maintain

Network Problems

* Latency, Jitter, Loss

— Latency

e Latency is the time spent for a packet to reach its
destination.

* Considered as half of Round Trip Time (send a data and get it
back) for symmetric networks

— litter
* Variations in latency
* Means inconsistency
— Loss

* Some packets gets lost (corrupted)
* Increases time spent for data exchange

Network Problems

e Causes of

— Latency

* Propagation delay which is a result of;

— Physical Limitations (speed of light is the upper limit for
communication)

— latency (ms) = (distance of link in kilometres)/300

* Serialisation; data is transferred in series of bits, all the bits
should arrive to the destination in a correct order to be
serialised which takes time

— Ia;en)cy (ms) = 8*(link layer frame length in bytes)/(link speed in
Kbps

* Queuing delays; Switches doesn’t provide equally timeslots
for internet communication which means if the internet
traffic is heavy on a switch internet gets slow.

Network Problems

e Causes of

— Jitter
* Path length changes

— Data being sent doesn’t always use the same path on reaching
its destination

* Packet size changes

— Hence because of serialisation, sending time varies

Network Problems

e Causes of

— Loss

— Physical unrecoverable bit errors
— Dropping packets because of heavy communication traffic

How Network Games Tolerate
Network Problems

¢ Latency Compensation
— Why
* There will always be delays because of physical limitations

* Bandwidth is increasing but there are loads of packet loss

* Broadband communication speed varies from country to
country

* A Game should be

— Consistent
— Responsive
— Fair

— So we always need methods to compensate the
latency caused by network infrastructure

Latency Compensation

 The Simplest Client Side Algorithm of Network
Games

— Collect user input

— Pack up data and send it to server

— Receive updates from server and unpack
— Determine game state

— Render scene

— Repeat

Latency Compensation

* Qutcome of the basic algorithm

— Client waits until server responses which
decreases the responsiveness of the game but
also makes the game consistent

Latency Compensation

 Prediction

— Player Prediction

* Client predicts player’s own movement and continues
movement

e Algorithm
— Sample user input
— Pack up data and send to server
— Determine visible objects and game state
— Render scene
— Receive updates from server and upack
— Fix up any discrepancies
— Repeat.

Latency Compensation

* Algorithm on the player to be predicted

Prediction

— Opponent Prediction

* Client predicts opponents’
movements

e Requires more data to be
transferred from other clients
in order to make a reasonable
prediction

* However, by not sending the
data if the difference is under
and threshold, data transfer
rate could be reduced

Sample user input
Update {location | velocity | acceleration}
on the basis of new input
Compute predicted location on the basis of
previous {location | velocity | acceleration}
If (current location — predicted location) <
threshold then

* Pack up {location | velocity |

acceleration} data

* Send to each other opponent

Repeat.

* Algorithm on the opponent

Receive new packet
Extract state update information {location |
velocity | acceleration}
If seen unit before then

* Update unit information
Else

* Add unit information to list
For each unit in list

* Update predicted location
Render frame
Repeat

Latency Compensation

* Prediction Summary

— Might be useful if a responsive but not that
consistent game

— What if a packet gets lost? And arrives afterwards
(in this case using UDP is not the best idea)

— Some situations are impossible to predict, i.e. 3
players running towards each other and tosses,
who tossed to whom first?

Latency Compensation

* Time Manipulation
— Some clients might have high latencies
— Game should be fair, consistent and responsive
— (example of collecting rewards)

Latency Compensation

* Time Manipulation

— Time Delay

* Server looks at the latencies and in order to maintain
the fairness and consistency adds some extra delay for
the ones has less latency

— litter is a problem here

— What if the client is showing its latency higher than it actually
IS

Latency Compensation

 Time Manipulation
— Time Wrap

* Server looks at latency to the client
and rolls back the time as necessary

Also protects from inconsistencies
caused by loss packets (as they
might not arrive in time order)

May still cause inconsistencies i.e.
the player-1 is just moved to behind
of a wall and at that moment
player-2 shot, for player-1 bullet
bend and moved to the behind of
the wall (this may cause regularly if
jitter rate is high)

e Algorithm on server side

Receive packet from client
Extract information (user input)
Elapsed time = current time -
latency to client (rollback the time
to the clients time)

Rollback all events in reverse
order to current time — elapsed
time

Execute user command

Repeat all events in order,
updating any clients affected
Repeat.

Latency Compensation

* Sending less or compressed data

— Lossless compression: LZW algorithms for
compression of stream data

— Opponent prediction: Reduces the data sent

— Delta compression: Send the differences not the
whole data

— Interest Management: Send information of close
objects (don’t send distant objects’ information)

— P2P: Avoids sending data irrelevant data to the server

— Update Aggregation: Collect data for a client and sent
all the collected data at a time instead of sending
instant update data

Further reading topics

* Cheating Prevention

 Fair Randomness

Questions

Bibliography

— Armitage, G., Claypool, M., Branch, P.
(2006). Networking and Online Games. West
Sussex: John Wiley & Sons Ltd.

— Smed, J., Hakonen, H. (2006). Algorithms and
Networking for Computer Games . West Sussex:
John Wiley & Sons Ltd.

— Barron, T. (2001). Multiplayer Game
Programming. California: Stacy L. Hiquet

